
MapONE
Software Design (Version 2)

February 18, 2022

Sponsors:
Planetary Geologic Mapping Program, USGS Astrogeology Science Center

Dr. Sarah Black, Research Physical Scientist
Marc Hunter, IT Specialist

Faculty Mentor:
Melissa D. Rose

Team Members:
Samantha Milligan

Michael Nelson
Ricardo McCrary

Jacob Stuck

Overview: The purpose of the Software Design document is to outline the project’s architectural
design.

1



Table of Contents

1. Introduction 3

2. Implementation Overview 4

3. Architectural Overview 5

4. Module and Interface Descriptions 6

4.1 GUI 6

4.2 Web Scraper 10

4.3 Database 12

5. Implementation Plan 16

6. Conclusion 17

2



1. Introduction
The planetary science community develops, collects, and distributes cartographic research.

Similar to geologic mapping on Earth, planetary maps identify key features such as craters,

canyons, and fault lines on other planets. Scientists use these resources for various reasons - from

surveying space exploration sites to collecting data on planetary elemental composition. The

client, the United States Geological Survey (USGS) Planetary Geologic Mapping (PGM)

Program, assists the community by developing tools and resources to better access and use

planetary data for these purposes. Notably, the program outlined the landing/exploration site for

the National Aeronautics and Space Administration’s (NASA’s) Mars 2020 Perseverance Rover

mission. In this case, scientists used map products to gather information about Mars's surface.

Scientists publish their planetary maps and research either through USGS or various online

sources (often in journal articles and conference papers). Because USGS mandates certain map

standards, many publications are distributed throughout the internet instead. Nevertheless, these

resources are valuable to the client to provide the community with all types of publications.

However, USGS currently does not have an automated way to collect these existing resources

and thus, lacks a centralized system for maps published in non-USGS venues.

To solve this integration issue, the project team will create a single system for non-USGS map

publications. The envisioned product, MapONE, is a user-friendly interface accessible through

the USGS’s website. The interface will display map metadata for a selected region of interest and

connect to a database containing online non-USGS publications collected from a web scraper.

The following technologies will be used to create this product:

1. Graphical User Interface (GUI): A GUI will be used to display map data on a single

web application.

2. Web Framework: MapONE’s web framework will filter metadata (author, source,

region, etc.) from the database using user requests from the GUI.

3. Web Scraper: The project team will develop a data extraction tool, known as a web

scraper, to automatically detect and gather map publication metadata (author, source,

region, etc.) from online non-USGS sources.

3



4. Central Database: MapONE will store publication metadata in one centralized database.

5. Remote Storage and Servers: Cloud computing services will be used to store map data

and run the product’s web application.

At the system’s center, the web scraper locates online map products and extracts publication

metadata for the web framework to store in the database. The framework will then display the

data to the client using a GUI. This way MapONE ensures these publications and content are

available to the client. Together, these technologies will create a system for users to view and

archive map publication data.

MapONE also has four main features. The user account system allows users to login into a

USGS account to view previous search history and archived publications. The search engine

allows users to view and filter map metadata. The archive system can automate searches

periodically (monthly per client request). Lastly, the notification system informs users of new

publications from automated search results. Some key requirements also include how accessible

the GUI is to users and the response speed of automated searches (how often the web scraper

pulls data). These are vital for MapONE’s performance to efficiently pull and display data. The

product must also be a web-based, open-source Python tool as requested by the client.

2. Implementation Overview
MapONE’s success relies on the software integration of many technologies. The project team

will use Flutter, a frontend web-based software, to create the GUI. Django, a Python full-stack

web development software, will be used as the web framework which automatically sets SQLite

as its default database structure. Lastly, Keras, a Python Machine Learning (ML) library, will be

used to create the web scraper.

To connect the GUI (frontend) to the web framework (backend), the two will run on separate

servers. The GUI can then execute an Application Programming Interface (API) request to the

Django server to gather information from the backend and display to users on the frontend. The

web framework uses a file called models.py to structure the database which can be called

4



anywhere within the framework including views.py where the API exists. This connection allows

the GUI to access metadata from the framework’s database. As shown in Figure 1, the web

scraper and the framework’s automated verification process are responsible for populating the

database with correct article entries. Each entry the web scraper collects must be internally

checked and verified to be stored in MapONE’s database (Entry Class). This ensures that the web

scraper remains active at all times (continuously collecting entries) and instead allows the

database and other backend functions to verify entries separately. Overall, the product’s main

technologies (GUI, web scraper, and database) will remain separate systems to enforce

modularity and ease of implementation.

Figure 1. Entry verification process.

3. Architectural Overview
As shown in Figure 2, MapONE will run on two separate servers for the frontend and backend.

The GUI will handle all user requests through the web application. These requests will be

translated into API calls where the GUI requests information or invokes a specific operation

from the backend. For example, when a user logins, the GUI will send the user’s input (given

email address and password) to the web framework in the form of an API request. The web

framework will then verify the login information and send the GUI a successful or client error

Hypertext Transfer Protocol (HTTP) response depending on if the user is valid or invalid.

Essentially, the GUI and web framework will only communicate via API requests and use HTTP

responses to pass data.

5



Figure 2. MapONE’s high-level architectural diagram.

Within the web framework, the web scraper solely extracts metadata from online sources

containing map products and passes entries to the database to be verified and added to

MapONE’s publications. This is a one-way communication link where the web scraper passes

entry information and relies on the database structure (and other operations within the web

framework) to verify map metadata. Thus, only the database handles entry and user information.

Ultimately, all data and core operations provided to users are stored in the backend and can be

accessed by the GUI given a user request.

4. Module and Interface Descriptions
4.1 GUI
As the front of the system, the GUI is responsible for handling all user requests. As previously

mentioned, Flutter is used to build the system’s frontend. The software uses the Dart language to

construct classes and to implement UI functionalities (colors, buttons, etc.). In Flutter, every

class inherits either stateful or stateless widgets. Stateful objects control the UI’s output given a

6



change of state. Examples include text fields or checkboxes; the UI’s response changes

depending on the user’s input. On the other hand, stateless widgets remain constant (ex. icons,

theme colors, title names, etc.). As a note, the underscore symbol is used to denote a class

managed by a stateful widget.

MapOne Class

This is the root class of the main.dart file where all stateless widgets are defined. The following

class variables are necessary for all UI pages:

● primaryColor: Sets the color theme for the UI as a ThemeData type.

● title: Sets the title of the application as a MaterialApp type.

This function is also used to run the entire frontend application:

● build(BuildContext context): Builds the UI as a stateless variation.

mapOneHomepage Class

This class builds the application’s homepage and sends user input and output data to

_MapOneHomePageState. The class uses the following functions to define the homepage:

● super(): Default constructor allows the homepage to access the widget functions in the

StatefulWidget class.

● mapOneHomepage2(): Additional constructor that allows the execution of calls from

the BackendCalls Class without requiring any initialization parameters.

_MapOneHomePageState Class

This class manages the state of the context builder which allows for changes in the application’s

view. Essentially, this class handles all dynamic actions on MapONE’s homepage. The following

class variables and functions are used to communicate and send data between the frontend and

backend:

● backendConsume: Allows the BackEndClass to communicate with

_MapOneHomePageState and populate the main data table.

● fetchApiData(): Converts data passed from the backend API to a string type.

● Scaffold(): The root of the application’s view and contains several nested widgets such as

appBar(), the topmost bar in the UI.

7



● AppBar(): Builds the search and menu bars to accept user text input.

● Center(): Assists Cascading Styling Sheets (CSS) to place UI items in the center view of

the application.

● Column(): Places UI items in the center of the screen in a vertical manner.

● DataTable(), DataColumn(), DataRow(), and DataCell(): All functions used to

construct and populate the data table icon where all the planetary mapping publication

metadata will be displayed.

backEndCalls Class

This class facilitates the communication between the backend API and the GUI.

● title: Sets the title of the application as a string type.

● consumeApi(): Makes an API request to the backend.

Data Class

This class is responsible for managing and organizing the data that is received in BackendCalls

into a data table. The following class variables and functions provide this functionality.

● publicationNode: Holds a reference to a list containing the serialized publication data

from the backend.

● inData: Holds data from fetchApiData() as a string type.

● populateDataRows(source, link, body, scale, author, publicationInfo): Returns a data

row containing the specified publication metadata as a DataRow type.

● serializeAsyncBuilderData(asyncStr): Converts serialized data into a string type.

● PopulateLL(SerializedStr): Populates a list containing new data pulled from the

backend.

● IterateThroughLL(serializedStr): Iterates through the data list from backend API and

extracts publication metadata.

User Class

The user class is responsible for displaying user profile information and available features (view

profile picture, change password, etc.). The following class variables and functions are necessary

to populate each profile page:

8



● userid: A generated unique identifier (ID) for each user as an integer type.

● editPassword(): Makes the appropriate call to the database through Django to edit the

password.

● createUserAccount(): Makes a rest call to create a new user in the backend.

● getUserID: Makes a get request to the backend and serializes the user ID as a string type.

● verifyLogin(): Accepts the user’s input password and sends it to the backend to be

verified, returns a boolean check.

● SizedBox(): Built-in method from the Flutter widget library that allows other widgets to

be encapsulated to fit them onto a specific section of the page.

● Card(): Built-in method from the Flutter widget library that creates a box that can

contain a text field and act as a button.

● CircleAvatar(): Built-in method from the Flutter widget library that creates a circle that

can be filled in with a set of colors to represent a randomly generated profile picture.

● BoxDecoration(): Built-in method from the Flutter widget library that encapsulates

DecorationImage() and AssetImage() which is currently set to display a picture of the

Mars Rover as shown in Figure 3.

Figure 3. MapONE’s user profile panel.

9



Figure 4. UML Diagram of MapOne’s UI

4.2 Web Scraper
MapONE’s web scraper extracts metadata from online publications to store in the system’s

database. This metadata is accessed via function calls that correspond to the location of

10



information within the article. Specifically, the web scraper identifies the title, author(s), area of

interest, scale, and link associated with the online publication. The functions for each data pull as

well as the necessary utility functions for scraping a website are listed below:

● url_reader(url): Establishes a connection to the URL using the urllib library.

● title_scraper(title): Returns string representation of the title within the publication.

● author_scraper(author): Returns a list of authors from the text of the publication.

● area_scraper(area): Pulls data related to the publication’s planetary map of interest.

● scale_scraper(scale): Returns string representation of the scale within the planetary map.

● abstract_scraper(abstract): Returns the first body of text from the publication as a

string.

● url_scraper(link): Returns the link of the current URL as a string.

● database_writer(site_url_index): Writes the publication data to a .txt/.csv file.

ML Model

To automate the web scraping process, a ML model runs scheduled monthly data pulls to check

and add new publications. The algorithm currently pulls data from the Springer library, a popular

science journal for map products. The project team continues to train the model to identify

articles from other website libraries/catalogs as necessary. The model locates and logs

publications based on keywords provided by user searches on the frontend. The content found

will be presented within the logged folder generated by the status_logger function. This will help

with organizing information for the database writer in the web scraper. Current functions for the

ML framework are provided below:

● url_generator(urls_to_scrape): Scrapes all publications/web pages of the related topic

and returns a list of possible URLs to scrape.

● processor(keywords, urls_to_scrape): Provides functionality to scrape multiple pages of

results in a library.

● status_logger(log_names): Prints scraping progress and details regarding each

publication as a list.

● pre_processor(keywords): Creates separate files to log keywords and their results.

11



Figure 5. MapONE’s web scraping utilities.

4.3 Database
MapONE’s backend development relies on the modularity and accessibility of the database. Both

the data gathered from users on the frontend and publication data from the web scraper can only

be accessed and stored through the database. To create a transferable system as shown, the

database must be broken down into user, entry, and archive classes (Figure 6) to support

MapONE’s four main systems.

Figure 6. MapONE’s database classes.

12



User Class

The user class is responsible for storing all user account information. This allows the system to

directly communicate with users at the login and user profile levels. The following class

variables are necessary for each user:

● user_id (PK): A generated unique identifier (ID) for each user as an integer type.

● email_address: A user’s email address used as the username to login as a string type.

● password: A user’s password used to login as a string type.

● archive_id_array: A list of archive IDs from automated searches requested by the user

as an integer array.

Within the scope of the user class, MapONE must be able to verify, login, and send notifications

to users using an authentication process. To implement these functionalities, the following class

functions are necessary:

● create_new_user(email_address, password): Creates a new user in the database and

returns Boolean operation success.

● generate_user_id(): Creates a generated unique identifier (ID) for each new user and

returns user ID as an integer type.

● send_notification(user_id, message): Sends a notification to user’s email address and

returns None.

● verify_email_address(email_address): Each new user must supply a valid email address

to be a user. This function returns whether the given email address is valid or invalid as a

boolean expression.

● verify_password(password): Likewise, each new user must also supply a valid

password. This function returns whether the given password passes the system’s

credentials (eight characters long and includes at least one special character) as a boolean

expression.

● verify_user(email_address, password): Verifies login input and returns boolean operation

success.

13



Entry Class

The entry class is responsible for storing all publication information. This allows the system to

directly communicate with users and the web scraper at the search engine level. The following

class variables are necessary for each publication entry:

● entry_id (PK): A generated unique identifier (ID) for each publication entry as an integer

type.

● source_name: Publication’s source name as a string type.

● source_link: Publication’s source Uniform Resource Locator (URL) as a string type.

● map_area: Publication’s map area as a string type.

● map_scale: Publication’s map scale as a string type.

● author_name: Publication’s author name as a string type.

MapONE’s web application must locate specific publication information requested by users

through the search bar and filter features. To implement this functionality, the following class

functions are necessary:

● create_new_entry(source_name, source_link, map_area, map_scale, author_name):

Creates a new publication entry in the database and returns boolean operation success.

● generate_entry_id(): Creates a generated unique identifier (ID) for each new entry and

returns entry ID as an integer type.

● search_map_area(map_area): Searches and returns all entries in the database with the

given map area as a list of arrays. The following is an example:

[
{

“entry_id”: 1234,
“source_name”: “Northern Arizona University”,
“source_link”: “nau.edu”,
“map_area”: “Mars”,
“map_scale”: “ ”,
“author_name”: “John Smith”

}
]

14



● search_source_name(source_name): Likewise, searches and returns all entries with the

given source name as a list of arrays.

● verify_entry(source_name, source_link, map_area, map_scale, author_name): Each

entry collected by the web scraper must be verified to be stored in the database. This

function verifies all entry information and returns boolean operation success.

Archive Class

The archive class is responsible for storing all automated search information. This allows the

system to directly communicate with users at the archive and user profile levels. The following

class variables are necessary for each automated search:

● archive_id (PK): A generated unique identifier (ID) to locate automated searches and

search history for each user as an integer type.

● archive_url: Web application’s URL for saved results after an archived search as a string

type.

● frequency: The frequency (weekly, monthly, yearly, etc.) of how often the automated

search should be updated/checked for new added entries as a string type.

● entry_number: The number of entries returned from an archive URL as an integer type.

The product must be able to track automated searches designated by the user and recognize when

new publications are added to the database. To implement these functionalities, the following

class functions are necessary:

● create_new_archive(archive_url, frequency, entry_number): Creates a new automated

search in the database and returns boolean operation success.

● check_entry_number(archive_url, frequency, entry_number): Checks current number of

publication entries pulled from the application’s URL. If the entry number is greater than

the past stored number, the system updates the stored entry number and sends a

notification to inform the user. This function returns None.

● generate_archive_id(): Creates a generated unique identifier (ID) for each new

automated search and returns archive ID as an integer type.

● save_new_archive(user_id, archive_id): Saves new archive ID in the user’s profile

(appends the archive_id to the user’s archive_id_array) and returns None.

15



● update_entry_number(archive_id, entry_number): Updates entry number as noted in

check_entry_number() and returns None.

● update_frequency(archive_id, new_frequency): Updates frequency of automated search

under user profile as requested by the user and returns None.

5. Implementation Plan

Figure 7. MapONE’s progression plan.

The team plans to test and implement the above outlined systems to prepare for MapONE’s final

production in May 2022. Each stage of the progression plan will include design and test phases.

The current project team’s goal is to have a basis for all functionalities and operations by the

alpha demo deadline, the week of March 7th. To achieve this, the UI must have a basic login

page, main page, and user profile. The backend, specifically the database, must have user, entry,

and archive classes. Lastly, the web scraper must be able to locate a subset of valid publications

using a ML model.

In the current project phase, the team is creating the user account and publication entry (search

engine) systems which must be implemented first as the foundation for the archive and

notification systems. The UI and web scraper have been an ongoing development from the

16



previous year and will continue throughout the progression plan, specifically displaying the main

UI pages and optimizing the ML model. After the alpha demo, a refinement period will occur

until the project’s release - final communication between the systems (UI, API/database, and web

scraper). Once reviewed by the client, the team will work to optimize the workflow, presentation,

and stability of the product.

6. Conclusion
The project team will continue developing MapONE, a single system for non-USGS planetary

map metadata for final production in May 2022. The web application is a user-friendly interface

that displays map metadata for a selected region of interest and connects to one database

containing non-USGS publications. With this product, users will have access to view, save, and

periodically automate searches to gather resources. This fits into the client’s vision of a product

capable of displaying scientific articles from other sources outside the USGS. The system will

add to USGS’s collection of map products while reducing the risk of researcher confirmation

bias; by providing an easy outlet for scientists to explore both types of publications, USGS can

further contribute to the planetary science community’s research.

This document also discussed MapONE’s three main modules - GUI, web scraper, and database -

and their primary functions within the overall system architecture. Lastly, the team’s project plan

outlined the current project and the next steps for production. Overall, this document prepares the

project team to implement all key software functionalities needed for the alpha demo.

17


